UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes.
نویسندگان
چکیده
Human skin is constantly exposed to solar ultraviolet radiation (UVR), the most prevalent environmental carcinogen. Humans have the unique ability among mammals to respond to UVR by increasing their skin pigmentation, a protective process driven by melanin synthesis in epidermal melanocytes. The molecular mechanisms used by melanocytes to detect and respond to long-wavelength UVR (UVA) are not well understood. We recently identified a UVA phototransduction pathway in melanocytes that is mediated by G protein-coupled receptors and leads to rapid calcium mobilization. Here we report that in human epidermal melanocytes physiological doses of UVR activate a retinal-dependent current mediated by transient receptor potential A1 (TRPA1) ion channels. The TRPA1 photocurrent is UVA-specific and requires G protein and phospholipase C signaling, thus contributing to UVA-induced calcium responses to mediate downstream cellular effects and providing evidence for TRPA1 function in mammalian phototransduction. Remarkably, TRPA1 activation is required for the UVR-induced and retinal-dependent early increase in cellular melanin. Our results show that TRPA1 is essential for a unique extraocular phototransduction pathway in human melanocytes that is activated by physiological doses of UVR and results in early melanin synthesis.
منابع مشابه
UV light phototransduction depolarizes human melanocytes
Exposure of human skin to low doses of solar UV radiation (UVR) causes increased pigmentation, while chronic exposure is a powerful risk factor for skin cancers. The mechanisms mediating UVR detection in skin, however, remain poorly understood. Our recent studies revealed that UVR activates a retinal-dependent G protein-coupled signaling pathway in melanocytes. This phototransduction pathway le...
متن کاملUV light activates a Gαq/11-coupled phototransduction pathway in human melanocytes
While short exposure to solar ultraviolet radiation (UVR) can elicit increased skin pigmentation, a protective response mediated by epidermal melanocytes, chronic exposure can lead to skin cancer and photoaging. However, the molecular mechanisms that allow human skin to detect and respond to UVR remain incompletely understood. UVR stimulates a retinal-dependent signaling cascade in human melano...
متن کاملThe Drosophila Light-Activated Conductance Is Composed of the Two Channels TRP and TRPL
SUMMARY Drosophila phototransduction is a G protein-coupled, calcium-regulated signaling cascade that serves as a model system for the dissection of phospholipase C (PLC) signaling in vivo. The Drosophila light-activated conductance is constituted in part by the transient receptor potential (trp) ion channel, yet trp mutants still display a robust response demonstrating the presence of addition...
متن کاملTRPC1, a human homolog of a Drosophila store-operated channel.
In many vertebrate and invertebrate cells, inositol 1,4,5-trisphospate production induces a biphasic Ca2+ signal. Mobilization of Ca2+ from internal stores drives the initial burst. The second phase, referred to as store-operated Ca2+ entry (formerly capacitative Ca2+ entry), occurs when depletion of intracellular Ca2+ pools activates a non-voltage-sensitive plasma membrane Ca2+ conductance. De...
متن کاملPhosphorylation of the Drosophila Transient Receptor Potential Ion Channel Is Regulated by the Phototransduction Cascade and Involves Several Protein Kinases and Phosphatases
Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 6 شماره
صفحات -
تاریخ انتشار 2013